magnifying glass Science - Observation Skill Builders:

Observation is a critical step in science. Nurses and doctors make many repeated observations as they care for people. Farmers, transportation workers and mariners monitor the weather. Scientists measure chemicals in our water and air to test for safety and pollution. Bird watchers count eggs in nests and birds visiting feeders. Teachers give tests to see how much their students have learned.

How many times have you observed the weather outside when deciding what to wear? You may have stuck a toe or a hand in the water, to see how cool it is, before you enjoy a swim.

Through careful observation we can make important decisions and discoveries. We can detect problems and intervene before serious damage occurs. People use data to measure for progress toward a goal. Inventors observe something like a hummingbird hovering and then experiment (trial and error) to develop a flying machine that can hover, too.

Scientists are careful observers. It is an important step in the Scientific Method.

Use these engaging exercises to practice observing interesting natural phenomena. Then begin asking questions.

Bush - winter

Nest - spring

Larvae - critters

Sky - early evening

Line - summer morning

Hole - creek in winter

Pool - woodland rock

Rock - mountain top surprise

Water - western state phenomena

Roadside mess

Roadside hill

Web Beasties

Wildflower Wonderment

Geology observation

Measuring Milkweed leaves activity

Winter Mystery Challenges A & B

Early Fall Log Mystery

Mid Fall Larva Mystery Challenge

Needles - early winter morn

Fuzzy - plant surprise

Sticky - cookout discovery

Sky view - early spring

Steps - imprints in winter

EEWW! - bump on a log

Cozy - life changes

Tree cross section - Hmm

Dinner dilemma

Clutter in forest

White stuff in creek

Wee Beasties

Rock formation in a path

Mystery "Stick"

Spring Doorstep Mystery

Summer Mystery Investigation

Parsley Mystery

Winter Brown Bundle Mystery new

Fluffy - surprise in a log

Chicks - nestbox peek

Mirror - mystery

Trees on Mountain

Observe - Predict

Larvae - mystery

Bird - mystery

Mystery Caterpillar & IPM

Journal Entry - Field Notes

Bluebirds Nest Box Log

Wrens in nestbox

Curiously colored water

Caterpillar Observe - Predict

Early Spring Outdoor Mystery

Rooftop Investigation Mystery

Window Investigation Mystery

Caterpillar Mystery

Want an interesting challenge? Make your own science observation activity. Look around. Find something that raises a question.
Feel free to follow/use the format I've developed.

Techie tip: To make an observation - click on the photo on the page.

When you do, you will see a bigger view. Notice that the cursor has morphed into a magnifying glass with a plus sign + in the middle. This signals that when you click on the image, an even closer view will appear. Try it.

When you do - notice that the cursor is now a magnifying glass which has a minus sign in it. Click on the photo to reduce it.

Use your browser's back button or History feature to return to the observation activity's web page.

Check out this wicked awesome experiment conducted in outer space. After you read the text, make a prediction about what will happen. Then watch the video. Wow, I never saw that coming!


star gold "Those who contemplate the beauty of the earth find reserves of strength
that will endure as long as life lasts." Rachel Carson

Bluebirds Project | Fields, Meadows & Fencerows EcoStudy | Wetlands EcoStudy Unit | Water & Watershed Study Unit

Habitat Project Digital Science Journal | Energy & Alternative Energy Studies | Plants & People | Milkweed & Monarch Butterfly Mania

Biodiversity Exploration Investigation | Ecology Community Status in your State's Ecosystem | Lentic and Lotic Ecosystems

Pennsylvania Environment and Ecology Education | Environmental Inquiry | PA Standards Aligned Systems

Science Links and Resources | Science NetLinks | Chem4Kids

Unlocking the Power of Observation - NSTA | Exploring the Environment modules and activities

About Scientific Inquiry

meter ruler

All trademarks, copyright and logos belong to their respective owners.

Internet Hunts / Nature / Pennsylvania Projects / Problem & Project based Learning / Civics & History / Puzzles & Projects / Site map / Home

Posted by Cynthia J. O'Hora 10/2013, UTD 2/2013, released for noncommercial use by nonprofit organizations

Aligned with Pennsylvania Academic Standards Science & Technology, Ecology & Environment, Reading Writing, Careers | Rubric Templates at Bernie Dodge site

Pennsylvania Academic Standards - The Nature of Science
Processes, Procedures and Tools of Scientific Investigations
• Apply knowledge of scientific investigation or technological design in different contexts to make inferences to solve problems.
• Use evidence, observations, or a variety of scales (e.g., time, mass, distance, volume, temperature) to describe relationships.

National Science Education Standards:
CONTENT STANDARD G: As a result of activities in grades 9-12, all students should develop understanding of:

Scientific explanations must meet certain criteria. First and foremost, they must be consistent with experimental and observational evidence about nature, and must make accurate predictions, when appropriate, about systems being studied. They should also be logical, respect the rules of evidence, be open to criticism, report methods and procedures, and make knowledge public. Explanations on how the natural world changes based on myths, personal beliefs, religious values, mystical inspiration, superstition, or authority may be personally useful and socially relevant, but they are not scientific.

Because all scientific ideas depend on experimental and observational confirmation, all scientific knowledge is, in principle, subject to change as new evidence becomes available. The core ideas of science such as the conservation of energy or the laws of motion have been subjected to a wide variety of confirmations and are therefore unlikely to change in the areas in which they have been tested. In areas where data or understanding are incomplete, such as the details of human evolution or questions surrounding global warming, new data may well lead to changes in current ideas or resolve current conflicts. In situations where information is still fragmentary, it is normal for scientific ideas to be incomplete, but this is also where the opportunity for making advances may be greatest.